Heats of formation of beryllium, boron, aluminum, and silicon re-examined by means of W4 theory.

نویسندگان

  • Amir Karton
  • Jan M L Martin
چکیده

Benchmark total atomization energies (TAE0 values) were obtained, by means of our recent W4 theory [Karton, A.; Rabinowitz, E.; Martin, J. M. L.; Ruscic, B. J. Chem. Phys. 2006, 125, 144108], for the molecules Be2, BeF2, BeCl2, BH, BF, BH3, BHF2, B2H6, BF3, AlF, AlF3, AlCl3, SiH4, Si2H6, and SiF4. We were then able to deduce "semi-experimental" heats of formation for the elements beryllium, boron, aluminum, and silicon by combining the calculated TAE0 values with experimental heats of formation obtained from reactions that do not involve the species Be(g), B(g), Al(g), and Si(g). The elemental heats of formation are fundamental thermochemical quantities that are required whenever a molecular heat of formation has to be derived from a calculated binding energy. Our recommended DeltaH degrees f,0 [A(g)] values are Be 76.4+/-0.6 kcal/mol, B 135.1+/-0.2 kcal/mol, Al 80.2+/-0.4 kcal/mol, and Si 107.2+/-0.2 kcal/mol. (The corresponding values at 298.15 K are 77.4, 136.3, 80.8, and 108.2 kcal/mol, respectively.) The Be value is identical to the CODATA recommendation (but with half of the uncertainty), while the B, Al, and Si values represent substantial revisions from established earlier reference data. The revised B and Si values are in agreement with earlier semi-ab initio derivations but carry much smaller uncertainties.

منابع مشابه

Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler

Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...

متن کامل

Theoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes

In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...

متن کامل

Theoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes

In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...

متن کامل

Effects of Aluminum, Silicon And Ferro Silicon Anti Oxidants in MgO C Refractories

  Three different materials (aluminum, ferro -silicon and silicon) were used as antioxidants in order to prevent the decarburization process and to keep and/or increase the final properties in MgO-C refractories. Their effects were compared by measuring the physical and mechanical properties as well as oxidation and the resultant phases and microstructures, in the temperature range of 200-1600 ...

متن کامل

Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures

Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 26  شماره 

صفحات  -

تاریخ انتشار 2007